论文标题
间歇地图家族的扩散系数的不同性
Differentiability of the diffusion coefficient for a family of intermittent maps
论文作者
论文摘要
众所周知,Liverani-Saussol-Vaienti地图满足了Hölder可观察物的中心限制定理,在可以总结相关性的参数方面。我们表明,当考虑$ c^2 $可观察物时,限制正态分布的差异是参数的$ c^1 $函数。我们首先通过研究Green-kubo公式来显示第一个返回映射到第二个分支的底部,然后使用KAC的引理结束原始地图的结果并依靠线性响应。
It is well known that the Liverani-Saussol-Vaienti map satisfies a central limit theorem for Hölder observables in the parameter regime where the correlations are summable. We show that when $C^2$ observables are considered, the variance of the limiting normal distribution is a $C^1$ function of the parameter. We first show this for the first return map to the base of the second branch by studying the Green-Kubo formula, then conclude the result for the original map using Kac's lemma and relying on linear response.