论文标题
使用无可能的贝叶斯推断的人口校准
Population Calibration using Likelihood-Free Bayesian Inference
论文作者
论文摘要
在本文中,我们为人口校准开发了一种无似然的方法,该方法涉及在模型中馈送时查找模型参数的分布,从而产生一组与可用人口数据相匹配的输出。与大多数其他人口校准方法不同,我们的方法对估计分布产生不确定性量化。此外,该方法可以应用于任何人口校准问题,无论感兴趣的模型是确定性的还是随机的,或者是否在没有测量误差的情况下观察到人口数据。我们在几个示例中演示了该方法,包括具有真实数据的示例。我们还讨论了该方法的计算局限性。此处开发的方法的直接应用存在于许多医学研究领域,包括癌症,Covid-19,药物开发和心脏病学。
In this paper we develop a likelihood-free approach for population calibration, which involves finding distributions of model parameters when fed through the model produces a set of outputs that matches available population data. Unlike most other approaches to population calibration, our method produces uncertainty quantification on the estimated distribution. Furthermore, the method can be applied to any population calibration problem, regardless of whether the model of interest is deterministic or stochastic, or whether the population data is observed with or without measurement error. We demonstrate the method on several examples, including one with real data. We also discuss the computational limitations of the approach. Immediate applications for the methodology developed here exist in many areas of medical research including cancer, COVID-19, drug development and cardiology.