论文标题

Safe-OCC:卷积神经网络传感器的新颖性检测框架及其在过程控制中的应用

SAFE-OCC: A Novelty Detection Framework for Convolutional Neural Network Sensors and its Application in Process Control

论文作者

Pulsipher, Joshua L., Coutinho, Luke D. J., Soderstrom, Tyler A., Zavala, Victor M.

论文摘要

我们提出了卷积神经网络(CNN)传感器的新颖性检测框架,我们称之为传感器激活的特征提取一级分类(Safe-OCC)。我们表明,该框架可以安全使用计算机视觉传感器在过程控制体系结构中。紧急控制应用程序使用CNN模型将视觉数据映射到可以由控制器解释的状态信号。合并此类传感器会引入重要的系统操作漏洞,因为CNN传感器在暴露于新颖(异常)视觉数据时会显示出高预测误差。不幸的是,实时识别这种新颖性是不平凡的。为了解决这个问题,Safe-OCC框架利用CNN的卷积块创建有效的功能空间,使用所需的一级分类技术进行新颖性检测。这种方法产生了与CNN传感器使用的特征空间直接对应的,并避免了得出独立潜在空间的需求。我们通过模拟控制环境证明了安全性OCC的有效性。

We present a novelty detection framework for Convolutional Neural Network (CNN) sensors that we call Sensor-Activated Feature Extraction One-Class Classification (SAFE-OCC). We show that this framework enables the safe use of computer vision sensors in process control architectures. Emergent control applications use CNN models to map visual data to a state signal that can be interpreted by the controller. Incorporating such sensors introduces a significant system operation vulnerability because CNN sensors can exhibit high prediction errors when exposed to novel (abnormal) visual data. Unfortunately, identifying such novelties in real-time is nontrivial. To address this issue, the SAFE-OCC framework leverages the convolutional blocks of the CNN to create an effective feature space to conduct novelty detection using a desired one-class classification technique. This approach engenders a feature space that directly corresponds to that used by the CNN sensor and avoids the need to derive an independent latent space. We demonstrate the effectiveness of SAFE-OCC via simulated control environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源