论文标题
边界CFT $ _2 $中重型运营商的通用动态
Universal Dynamics of Heavy Operators in Boundary CFT$_2$
论文作者
论文摘要
我们为通用边界条件提供了通用的渐近公式,用于对任何统一,紧凑的二维边界CFT(BCFT)的散装和边界运营商产品扩展系数的平均值。渐近极限包括取一个或多个边界主要算子(在Virasoro代数的单个副本下转换),以使固定中心电荷具有参数较大的共形尺寸。特别是,我们发现一个\ textit {single {single}通用表达式在不同的重型方案之间进行了插值,就像在散装OPE渐近学的情况下\ cite {collier:2019weq}一样。该表达普遍取决于边界熵和中心电荷,而不取决于理论的任何其他细节。我们通过研究具有开放边界的较高属的riemann表面上的各种相关函数的交叉对称性来得出这些渐近学。派生中必不可少的是使用交叉内核的非理性版本,这些版本将不同通道中的霍明型Virasoro块相关联。我们的结果强烈提出了边界OPE系数的特征态热假说的扩展版本,在ANSATZ中,对角线和非对角线项之间的层次结构由边界熵进一步控制。我们最终在$ \ text {ads} _3/\ text {bcft} _2 $的上下文中评论结果的应用,以及与蒸发黑洞的较低维度模型的最新关系。
We derive a universal asymptotic formula for generic boundary conditions for the average value of the bulk-to-boundary and boundary Operator Product Expansion coefficients of any unitary, compact two-dimensional Boundary CFT (BCFT) with $c>1$. The asymptotic limit consists of taking one or more boundary primary operators -- which transform under a single copy of the Virasoro algebra -- to have parametrically large conformal dimension for fixed central charge. In particular, we find a \textit{single} universal expression that interpolates between distinct heavy regimes, exactly as in the case of bulk OPE asymptotics\cite{Collier:2019weq}. The expression depends universally on the boundary entropy and the central charge, and not on any other details of the theory. We derive these asymptotics by studying crossing symmetry of various correlation functions on higher genus Riemann surfaces with open boundaries. Essential in the derivation is the use of the irrational versions of the crossing kernels that relate holomorphic Virasoro blocks in different channels. Our results strongly suggest an extended version of the Eigenstate Thermalization Hypothesis for boundary OPE coefficients, where the hierarchy between the diagonal and non-diagonal term in the ansatz is further controlled by the boundary entropy. We finally comment on the applications of our results in the context of $\text{AdS}_3/\text{BCFT}_2$, as well as on the recent relation of BCFTs with lower dimensional models of evaporating black holes.