论文标题
泊松通用序列
Poisson generic sequences
论文作者
论文摘要
几年前,Zeev Rudnick通过计算在固定整数底座中实数扩展的初始段中长块数字的出现数量来定义了泊松通用实数。佩雷斯(Peres)和魏斯(Weiss)证明,几乎所有实际数字,关于勒布斯格(Lebesgue)的措施,都是普通的通用,但他们没有发布证据。首先,我们在本说明中抄录了佩雷斯和魏斯的证明,然后证明有可计算的泊松通用实例,所有马丁·兰夫随机实数都是泊松通用。
Years ago, Zeev Rudnick defined the Poisson generic real numbers by counting the number of occurrences of long blocks of digits in the initial segments of the expansions of the real numbers in a fixed integer base. Peres and Weiss proved that almost all real numbers, with respect to Lebesgue measure, are Poisson generic, but they did not publish their proof. In this note first we transcribe Peres and Weiss' proof and then we show that there are computable Poisson generic instances and that all Martin-Löf random real numbers are Poisson generic.