论文标题

可行的扳手设置腿机器人的计算

Feasible Wrench Set Computation for Legged Robots

论文作者

Prieto, Ander Vallinas, Keemink, Arvid Q. L., van Asseldonk, Edwin H. F., van der Kooij, Herman

论文摘要

在运动期间,腿部机器人通过依次建立和破坏接触与地面相互作用。接触产生的相互作用扳手用于引导质量机器人中心(COM),并拒绝使系统偏离所需轨迹的扰动,并且常常使它们掉落。给定的控制目标(所需的COR扳手或加速度)的可行性由接触点分布,地面摩擦和致动限制来调节。在这项工作中,我们开发了一种方法来计算腿部机器人可以通过触点在其COM上施加的可行扳手集。提出的方法可以与任何数量的非平面触点一起使用,并根据具有库仑摩擦的非弹性接触模型考虑了驱动限制和局限性。这是用平面双头模型站立的,脚在不同高度的情况下进行了例证。从接触模型中利用假设,我们解释了如何计算触点保持在原位时在com上可行的扳手集以及当某些触点被打破时可行的扳手。因此,该方法可用于评估触点配置中的开关在完成给定的控制任务时是否可行。此外,该方法可用于识别系统不动的方向(即不能在这些方向上施加扳手)。我们展示如何使用较低外部外骨骼的空间模型在给定的姿势下以给定姿势的机器人的非插入扳手方向更改机器人的非插入扳手方向。因此,此方法也是系统设计阶段的有用工具。这项工作为控制和设计的腿部系统提供了有用的工具,该工具扩展了当前的最新状态。

During locomotion, legged robots interact with the ground by sequentially establishing and breaking contact. The interaction wrenches that arise from contact are used to steer the robot Center of Mass (CoM) and reject perturbations that make the system deviate from the desired trajectory and often make them fall. The feasibility of a given control target (desired CoM wrench or acceleration) is conditioned by the contact point distribution, ground friction, and actuation limits. In this work, we develop a method to compute the set of feasible wrenches that a legged robot can exert on its CoM through contact. The presented method can be used with any amount of non-co-planar contacts and takes into account actuation limits and limitations based on an inelastic contact model with Coulomb friction. This is exemplified with a planar biped model standing with the feet at different heights. Exploiting assumptions from the contact model, we explain how to compute the set of wrenches that are feasible on the CoM when the contacts remain in position as well as the ones that are feasible when some of the contacts are broken. Therefore, this method can be used to assess whether a switch in contact configuration is feasible while achieving a given control task. Furthermore, the method can be used to identify the directions in which the system is not actuated (i.e. a wrench cannot be exerted in those directions). We show how having a joint be actuated or passive can change the non-actuated wrench directions of a robot at a given pose using a spatial model of a lower-extremity exoskeleton. Therefore, this method is also a useful tool for the design phase of the system. This work presents a useful tool for the control and design of legged systems that extends on the current state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源