论文标题
具有物理风格的图形神经网络的图形着色
Graph Coloring with Physics-Inspired Graph Neural Networks
论文作者
论文摘要
我们展示了如何使用图形神经网络来解决规范图形问题。我们将颜色构图为多类节点分类问题,并基于统计物理Potts模型使用了无监督的培训策略。对其他多级问题(例如社区检测,数据聚类和最低集团覆盖率问题)的概括是简单的。我们提供数值基准的结果,并通过端到端的应用程序说明了我们的方法,用于在全面的编码程序框架内实现现实世界调度案例。我们的优化方法在PAR或胜过现有的求解器上执行,并且能够扩展到数百万变量的问题。
We show how graph neural networks can be used to solve the canonical graph coloring problem. We frame graph coloring as a multi-class node classification problem and utilize an unsupervised training strategy based on the statistical physics Potts model. Generalizations to other multi-class problems such as community detection, data clustering, and the minimum clique cover problem are straightforward. We provide numerical benchmark results and illustrate our approach with an end-to-end application for a real-world scheduling use case within a comprehensive encode-process-decode framework. Our optimization approach performs on par or outperforms existing solvers, with the ability to scale to problems with millions of variables.