论文标题
Lipshitz类功能的绝对收敛因子一般傅立叶系列
Absolute convergence factors of Lipshitz class functions for general Fourier series
论文作者
论文摘要
本文的主要目的是研究正数的序列,对于$ lip1类中的傅立叶系数$ f \的乘积乘法提供了傅立叶级数的绝对收敛。特别是我们发现了正统系统功能的特殊条件,上面的序列是LIP1类傅立叶级系列功能的绝对收敛因子。已经确定,从某些意义上讲,最佳的条件是最好的。
The main aim of this paper is to investigate the sequences of positive numbers, for which multiplication with Fourier coefficients of functions $f\in$ Lip1 class provides absolute convergence of Fourier series. In particular we found special conditions for the functions of orthonormal system, for which the above sequences are absolute convergence factors of Fourier series of functions of Lip1 class. It is established that the resulting conditions are best possible in certain sense.