论文标题
Kresling折纸中的拓扑状态转移
Topological state transfer in Kresling origami
论文作者
论文摘要
拓扑机械超材料已被广泛探索其边界状态,可以以受控的方式牢固地隔离或运输。但是,这样的系统通常需要预先配置的设计或复杂的主动驱动才能进行波浪操作。在这里,我们通过利用扭曲折纸晶格中的可重构性固有性来提出对拓扑边界模式的原位转移的可能性。特别是,我们采用了一个二聚体的折纸系统,该系统由具有相反手性的单位细胞组成,并在弹性波中伴随着纵向和旋转自由度。施加在晶格上的准静态扭曲改变了晶格的应变景观,从而显着影响波散关系和底部带的拓扑。反过来,这促进了从一个边缘到另一个边缘的有效拓扑状态转移。因此,这种简单而实用的能量转移方法在折纸启发的晶格中可以激发新的有效的能量操纵设备。
Topological mechanical metamaterials have been widely explored for their boundary states, which can be robustly isolated or transported in a controlled manner. However, such systems often require pre-configured design or complex active actuation for wave manipulation. Here, we present the possibility of in-situ transfer of topological boundary modes by leveraging the reconfigurability intrinsic in twisted origami lattices. In particular, we employ a dimer Kresling origami system consisting of unit cells with opposite chirality, which couples longitudinal and rotational degrees of freedom in elastic waves. The quasi-static twist imposed on the lattice alters the strain landscape of the lattice, thus significantly affecting the wave dispersion relations and the topology of the underling bands. This in turn facilitates an efficient topological state transfer from one edge to the other. This simple and practical approach of energy transfer in origami-inspired lattices can thus inspire a new class of efficient energy manipulation devices.