论文标题
GMM聚类用于深入食品可及性模式探索和食品需求行为的预测模型
GMM Clustering for In-depth Food Accessibility Pattern Exploration and Prediction Model of Food Demand Behavior
论文作者
论文摘要
了解食品银行对粮食不安全的需求的动态对于优化运营成本和公平分配食品至关重要,尤其是在需求不确定的情况下。因此,选择高斯混合模型(GMM)聚类以提取图案。新颖性是,应用GMM聚类用于确定特定地区的粮食不安全感的可能原因,了解特定地区的食品援助网络的特征和结构,并进一步利用聚类结果来探索不确定的食品需求行为的模式及其在库存管理中的重要意义及其在库存管理中的重要性,并在库存管理中进行了两层次的食品需求模型。使用从俄亥俄州克利夫兰的食品银行网络获得的数据,并研究和可视化了开发的集群。结果表明,该提出的框架可以深入识别食品可及性和辅助模式,并通过利用GMM聚类结果来更好地预测杠杆统计和机器学习算法的准确性。此外,基于不同级别的计划,实施案例研究的拟议框架,以明显的轻松和舒适性为各自的计划团队带来了实际的结果。
Understanding the dynamics of food banks' demand from food insecurity is essential in optimizing operational costs and equitable distribution of food, especially when demand is uncertain. Hence, Gaussian Mixture Model (GMM) clustering is selected to extract patterns. The novelty is that GMM clustering is applied to identify the possible causes of food insecurity in a given region, understanding the characteristics and structure of the food assistance network in a particular region, and the clustering result is further utilized to explore the patterns of uncertain food demand behavior and its significant importance in inventory management and redistribution of surplus food thereby developing a two-stage hybrid food demand estimation model. Data obtained from a food bank network in Cleveland, Ohio, is used, and the clusters developed are studied and visualized. The results reveal that this proposed framework can make an in-depth identification of food accessibility and assistance patterns and provides better prediction accuracies of the leveraged statistical and machine learning algorithms by utilizing the GMM clustering results. Also, implementing the proposed framework for case studies based on different levels of planning led to practical results with remarkable ease and comfort intended for the respective planning team.