论文标题

通过生成对抗网络对非参数家族的强大估计

Robust Estimation for Nonparametric Families via Generative Adversarial Networks

论文作者

Zhu, Banghua, Jiao, Jiantao, Jordan, Michael I.

论文摘要

我们提供了一个通用框架,用于设计生成对抗网络(GAN)来解决高维鲁棒统计问题,旨在估算给予对抗性损坏的样本的真实分布的未知参数。当真实分布在于高斯分布或椭圆形分布的家族时,先前的工作着重于稳健的平均值和协方差估计问题,并分析了基于该问题的深度或得分规则的损失。当真实分布仅具有限制ORLICZ规范时,我们的工作将这些工作扩展到了强大的平均估计,第二钟估计和鲁棒的线性回归,其中包括宽高斯,次指定和有界的力矩分布的广泛家族。我们还为GAN损失提供了一组不同的条件:我们只要求其感应距离函数是某些轻尾分布的累积密度函数,通过具有Sigmoid激活的神经网络可以很容易地满足。在技​​术方面,我们提出的GAN损失可以看作是平滑而广义的Kolmogorov-Smirnov距离,该距离克服了先前工作中原始的Kolmogorov-Smirnov距离的计算可比性。

We provide a general framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems, which aim at estimating unknown parameter of the true distribution given adversarially corrupted samples. Prior work focus on the problem of robust mean and covariance estimation when the true distribution lies in the family of Gaussian distributions or elliptical distributions, and analyze depth or scoring rule based GAN losses for the problem. Our work extend these to robust mean estimation, second moment estimation, and robust linear regression when the true distribution only has bounded Orlicz norms, which includes the broad family of sub-Gaussian, sub-Exponential and bounded moment distributions. We also provide a different set of sufficient conditions for the GAN loss to work: we only require its induced distance function to be a cumulative density function of some light-tailed distribution, which is easily satisfied by neural networks with sigmoid activation. In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance, which overcomes the computational intractability of the original Kolmogorov-Smirnov distance used in the prior work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源