论文标题

具有保留属性和可调整权衡的物理系统的替代建模

Surrogate Modeling for Physical Systems with Preserved Properties and Adjustable Tradeoffs

论文作者

Wang, Randi, Behandish, Morad

论文摘要

当遇到新的工程问题时,通常很难确定开发和解决物理模型的适当详细信息。这样的困难来自如何平衡时间(模拟成本)和之后的物理模型模拟的准确性。我们提出了一个自动开发物理系统替代模型家族的框架,这些模型提供了灵活的成本准确性权衡,以帮助做出此类决定。我们提出了一种基于模型的和数据驱动的策略,以生成替代模型。前者是从第一原理生成的高保真模型开始的,并应用了自下而上的模型订单降低(MOR),该模型可保留稳定性和收敛性,同时提供先验误差界限,尽管所得的减少阶模型可能会失去其可解释性。后者使用实验或仿真数据将人工本构关系拟合到预设拓扑结构中,从而生成可解释的替代模型。对于后者,我们使用TONTI图来系统地生成与假定拓扑结构的微分方程,该方程使用代数拓扑语义(LPM)共有的代数拓扑语义。使用标准系统识别算法估算组成关系的参数。我们的框架与分布式参数模型(DPM)的各种空间离散方案兼容,并且可以支持在不同物理领域中解决工程问题。

Determining the proper level of details to develop and solve physical models is usually difficult when one encounters new engineering problems. Such difficulty comes from how to balance the time (simulation cost) and accuracy for the physical model simulation afterwards. We propose a framework for automatic development of a family of surrogate models of physical systems that provide flexible cost-accuracy tradeoffs to assist making such determinations. We present both a model-based and a data-driven strategy to generate surrogate models. The former starts from a high-fidelity model generated from first principles and applies a bottom-up model order reduction (MOR) that preserves stability and convergence while providing a priori error bounds, although the resulting reduced-order model may lose its interpretability. The latter generates interpretable surrogate models by fitting artificial constitutive relations to a presupposed topological structure using experimental or simulation data. For the latter, we use Tonti diagrams to systematically produce differential equations from the assumed topological structure using algebraic topological semantics that are common to various lumped-parameter models (LPM). The parameter for the constitutive relations are estimated using standard system identification algorithms. Our framework is compatible with various spatial discretization schemes for distributed parameter models (DPM), and can supports solving engineering problems in different domains of physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源