论文标题

在纳米线中使用dzyaloshinskii-Moriya相互作用的landau-lifshitz-gilbert方程的进攻域壁的渐近稳定性

Asymptotic stability of precessing domain walls for the Landau-Lifshitz-Gilbert equation in a nanowire with Dzyaloshinskii-Moriya interaction

论文作者

Côte, Raphaël, Ignat, Radu

论文摘要

我们考虑了铁磁纳米线,我们专注于渐近方案,其中考虑了dzyaloshinskii-moriya的相互作用。首先,我们通过$γ$ -Convergence证明了缩小尺寸结果,该结果确定了为映射$ M的限制功能$ e $:\ Mathbb {r} \ to \ Mathbb {s}^2 $在方向上$ e_1 $ e_1 $ e_1 $。能量功能$ e $在$ e_1 $的翻译下不变,围绕轴$ e_1 $的旋转。当实施$ -e_1 $和$ e_1 $之间的过渡时,我们将有限能源$ e $的关键点完全分类;这些过渡层称为(静态)域壁。在施加的磁场$ h(t)e_1 $的效果下,与$ e $相关的landau-lifshitz-gilbert方程的域墙的演变,具体取决于时间变量$ t $,从而增加了所谓的预制域壁。我们的主要结果证明了针对小$ h $ in $ l^\ infty([[0, +\ infty))$和小$ h^1(\ Mathbb {r})$扰动的静态域墙壁的渐近稳定性。

We consider a ferromagnetic nanowire and we focus on an asymptotic regime where the Dzyaloshinskii-Moriya interaction is taken into account. First we prove a dimension reduction result via $Γ$-convergence that determines a limit functional $E$ defined for maps $m:\mathbb{R}\to \mathbb{S}^2$ in the direction $e_1$ of the nanowire. The energy functional $E$ is invariant under translations in $e_1$ and rotations about the axis $e_1$. We fully classify the critical points of finite energy $E$ when a transition between $-e_1$ and $e_1$ is imposed; these transition layers are called (static) domain walls. The evolution of a domain wall by the Landau-Lifshitz-Gilbert equation associated to $E$ under the effect of an applied magnetic field $h(t)e_1$ depending on the time variable $t$ gives rise to the so-called precessing domain wall. Our main result proves the asymptotic stability of precessing domain walls for small $h$ in $L^\infty([0, +\infty))$ and small $H^1(\mathbb{R})$ perturbations of the static domain wall, up to a gauge which is intrinsic to invariances of the functional $E$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源