论文标题

混合凯利图的分裂场上

Splitting fields of mixed Cayley graphs over abelian groups

论文作者

Huang, Xueyi, Lu, Lu, Mönius, Katja

论文摘要

混合图$γ$的分裂字段$ \ mathbb {sf}(γ)$是$ \ mathbb {q} $的最小场扩展,其中包含$γ$的Hermitian邻接矩阵的所有特征值。扩展度$ [\ MATHBB {sf}(γ):\ Mathbb {q}] $称为$γ$的代数度。在本文中,我们确定了阿贝尔群体上混合的Cayley图的分裂场和代数度。这概括了[K. Mönius,《循环图光谱的拆分场》,J。Elgebra594(15)(2022)154--169]和[M. Kadyan,B。Bhattacharjya,Abelian群体上的整体混合Cayley图,电子。 J. Combin。 28(4)(2021)\#p4.46]。

The splitting field $\mathbb{SF}(Γ)$ of a mixed graph $Γ$ is the smallest field extension of $\mathbb{Q}$ which contains all eigenvalues of the Hermitian adjacency matrix of $Γ$. The extension degree $[\mathbb{SF}(Γ):\mathbb{Q}]$ is called the algebraic degree of $Γ$. In this paper, we determine the splitting fields and algebraic degrees of mixed Cayley graphs over abelian groups. This generalizes the main results of [K. Mönius, Splitting fields of spectra of circulant graphs, J. Algebra 594(15) (2022) 154--169] and [M. Kadyan, B. Bhattacharjya, Integral mixed Cayley graphs over abelian groups, Electron. J. Combin. 28(4) (2021) \#P4.46].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源