论文标题

火星地形细分,标签较少

Mars Terrain Segmentation with Less Labels

论文作者

Goh, Edwin, Chen, Jingdao, Wilson, Brian

论文摘要

行星漫游车系统需要执行地形分割,以识别可驱动的区域,并确定特定类型的土壤以收集样品。最新的火星地形细分方法依赖于有监督的学习,这是非常饥饿的数据,很难在只有少数标记的样本可用的地方进行训练。此外,对于不同的应用程序(例如,漫游者遍历与地质),语义类别的定义不同,因此每次必须从头开始训练网络,这是对资源的效率低下。这项研究提出了针对火星地形细分的半监督学习框架,其中以无标记的图像进行训练的深层分割网络被转移到对几个标记图像的地形细分任务中。网络结合了一个骨干模块,该模块是使用对比度损耗函数和输出卷积模块进行训练的,该模块使用像素跨透明度损耗函数进行了训练。使用分割精度的度量标准的评估结果表明,对比度预训练的拟议方法优于普通监督学习的2%-10%。此外,提出的模型仅使用161次培训图像(占原始数据集的1%)即可达到91.1%的细分精度,而普通监督学习则可以实现81.9%。

Planetary rover systems need to perform terrain segmentation to identify drivable areas as well as identify specific types of soil for sample collection. The latest Martian terrain segmentation methods rely on supervised learning which is very data hungry and difficult to train where only a small number of labeled samples are available. Moreover, the semantic classes are defined differently for different applications (e.g., rover traversal vs. geological) and as a result the network has to be trained from scratch each time, which is an inefficient use of resources. This research proposes a semi-supervised learning framework for Mars terrain segmentation where a deep segmentation network trained in an unsupervised manner on unlabeled images is transferred to the task of terrain segmentation trained on few labeled images. The network incorporates a backbone module which is trained using a contrastive loss function and an output atrous convolution module which is trained using a pixel-wise cross-entropy loss function. Evaluation results using the metric of segmentation accuracy show that the proposed method with contrastive pretraining outperforms plain supervised learning by 2%-10%. Moreover, the proposed model is able to achieve a segmentation accuracy of 91.1% using only 161 training images (1% of the original dataset) compared to 81.9% with plain supervised learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源