论文标题

在孟加拉国达卡的一栋低收入房屋中进行建模通风

Modeling ventilation in a low-income house in Dhaka, Bangladesh

论文作者

Hwang, Yunjae, Laura, Kwong, Munim, Mohammad Saeed, Nizame, Fosiul Alam, Luby, Stephen, Gorlé, Catherine

论文摘要

根据联合国儿童基金会的说法,肺炎是5岁以下儿童死亡的主要原因。全球肺炎死亡人数的70%仅在包括孟加拉国在内的15个国家发生。先前的研究表明,孟加拉国达卡贫民窟住房的肺炎发生率与存在交叉通风之间存在潜在的关联。这项研究的目的是建立一个经过验证的计算框架,该框架可以预测贫民窟房屋中的通风率,以支持研究这种相关性的进一步研究。为了实现这一目标,我们将建筑热模型(BTM)与不确定性定量(UQ)结合使用。考虑到不同的通风配置,BTM解决了典型房屋中体积平均温度的时间进化。 UQ方法在模型参数,天气输入和物理模型中传播不确定性,以预测利益量的平均值和95%置信区间,即每小时的空气变化(ACH),即温度和通风率。将模型预测与空气和热质量温度和ACH的现场现场测量进行比较。结果表明,使用标准跨或单面通风模型限制了ACH预测的准确性;相比之下,基于可用ACH测量值所告知的基于相似关系的模型可以使用置信区间产生更准确的预测,该置信区间涵盖了17个可用数据点中12个的测量值。

According to UNICEF, pneumonia is the leading cause of death in children under 5. 70% of worldwide pneumonia deaths occur in only 15 countries, including Bangladesh. Previous research has indicated a potential association between the incidence of pneumonia and the presence of cross-ventilation in slum housing in Dhaka, Bangladesh. The objective of this research is to establish a validated computational framework that can predict ventilation rates in slum homes to support further studies investigating this correlation. To achieve this objective we employ a building thermal model (BTM) in combination with uncertainty quantification (UQ). The BTM solves for the time-evolution of volume-averaged temperatures in a typical home, considering different ventilation configurations. The UQ method propagates uncertainty in model parameters, weather inputs, and physics models to predict mean values and 95% confidence intervals for the quantities of interest, namely temperatures and ventilation rates in terms of air changes per hour (ACH). The model predictions are compared to on-site field measurements of air and thermal mass temperatures, and of ACH. The results indicate that the use of standard cross- or single-sided ventilation models limits the accuracy of the ACH predictions; in contrast, a model based on a similarity relationship informed by the available ACH measurements can produce more accurate predictions with confidence intervals that encompass the measurements for 12 of the 17 available data points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源