论文标题

使用可不同的模拟器的物理设计

Physical Design using Differentiable Learned Simulators

论文作者

Allen, Kelsey R., Lopez-Guevara, Tatiana, Stachenfeld, Kimberly, Sanchez-Gonzalez, Alvaro, Battaglia, Peter, Hamrick, Jessica, Pfaff, Tobias

论文摘要

设计有目的的物理工件(例如工具和其他功能结构)对于工程和日常人类行为至关重要。尽管自动设计具有巨大的希望,但尚不存在通用方法。在这里,我们探索了一种简单,快速且可靠的逆设计方法,该方法将基于图形神经网络的前向模拟器与基于梯度的设计优化相结合。我们的方法通过复杂的物理动态解决了高维问题,包括设计表面和工具来操纵流体流并优化机翼的形状以最大程度地减少阻力。该框架通过通过数百个步骤的轨迹传播梯度来产生高质量的设计,即使使用预先训练的模型来对与设计任务大不相同的数据进行单步预测的模型。在我们的流体操纵任务中,所得的设计优于基于抽样的优化技术发现的设计。在翼型设计中,他们匹配了使用专门求解器获得的质量。我们的结果表明,尽管剩下一些挑战,但基于机器的模拟器仍在成熟到可以支持各种域中的通用设计优化的地步。

Designing physical artifacts that serve a purpose - such as tools and other functional structures - is central to engineering as well as everyday human behavior. Though automating design has tremendous promise, general-purpose methods do not yet exist. Here we explore a simple, fast, and robust approach to inverse design which combines learned forward simulators based on graph neural networks with gradient-based design optimization. Our approach solves high-dimensional problems with complex physical dynamics, including designing surfaces and tools to manipulate fluid flows and optimizing the shape of an airfoil to minimize drag. This framework produces high-quality designs by propagating gradients through trajectories of hundreds of steps, even when using models that were pre-trained for single-step predictions on data substantially different from the design tasks. In our fluid manipulation tasks, the resulting designs outperformed those found by sampling-based optimization techniques. In airfoil design, they matched the quality of those obtained with a specialized solver. Our results suggest that despite some remaining challenges, machine learning-based simulators are maturing to the point where they can support general-purpose design optimization across a variety of domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源