论文标题
radial kohn-sham通过积分方程方法
Radial Kohn-Sham problem via integral-equation approach
论文作者
论文摘要
我们提出了一种用于解决球形对称原子的非相关性Kohn-Sham问题的数值工具。它将schrödinger方程视为一个积分方程,在很大程度上依赖于卷积。求解器支持不同类型的交换相关功能,包括筛选和远程校正的杂种。我们实现了一种基于互补误差函数内核来处理范围分离的新方法。本工具应用于原子的非相关性总能量计算中。与超专有参考数据[Cinal,JOMC 58,1571(2020)]的比较显示了Hartree-Fock结果的14位一致性。我们提供了使用5个不同的交换相关功能获得的进一步基准数据。
We present a numerical tool for solving the non-relativistic Kohn-Sham problem for spherically-symmetric atoms. It treats the Schrödinger equation as an integral equation relying heavily on convolutions. The solver supports different types of exchange-correlation functionals including screened and long-range corrected hybrids. We implement a new method for treating range separation based on the complementary error function kernel. The present tool is applied in non-relativistic total energy calculations of atoms. A comparison with ultra-precise reference data[Cinal, JOMC 58, 1571 (2020)] shows a 14-digit agreement for Hartree-Fock results. We provide further benchmark data obtained with 5 different exchange-correlation functionals.