论文标题

两种模式的光子添加了schrödinger猫的状态:非经典性和纠缠

Two Mode Photon Added Schrödinger Cat States: Nonclassicality and Entanglement

论文作者

Swain, S Nibedita, Jha, Yashovardhan, Panigrahi, Prasanta K.

论文摘要

光子的概念添加了两种模式的猫状态,其中两种模式是独立的,它们的非经典特性和纠缠都进行了研究。引入的状态出现为$ f_1f_2a_1a_2 $的特征状态,其中$ f_1,f_2 $是数字运算符的非线性函数,$ a_1,a_2 $是an灭操作员。我们使用平等操作员在规范转换下研究这些状态的演变,以谐波振荡器的标准相干状态。这些状态的非古典性质尤其是通过考虑亚硫代副统计和光子数分布来评估。有趣的是,添加光子会导致变化光子数分布显示振荡行为的区域。此外,已使用并发对引入状态的纠缠进行了定量分析。我们观察到,加入光子后,状态更快地接近最大纠缠。

The concept of photon added two-mode Schrödinger cat states in which both modes are independent is introduced, their non-classical properties and entanglement are studied. The introduced states emerge as the eigenstates of $f_1f_2a_1a_2$, where $f_1, f_2$ are nonlinear functions of the number operator and $a_1, a_2$ are annihilation operators. We study the evolution of these states under the canonical transformation using the parity operator for the case of standard coherent states of the harmonic oscillator. The non-classical properties of these states are evaluated especially by considering sub-Poissonian photon statistics and photon number distribution. Interestingly, the addition of photons leads to shifting the region in which photon number distribution shows oscillatory behavior. In addition, the entanglement of introduced states has been quantitatively analyzed using concurrence. We observe that the state approaches the maximum entanglement more rapidly after the addition of photons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源