论文标题

Backcasting Covid-19:早期病例发病率的物理信息估算值

Backcasting COVID-19: A Physics-Informed Estimate for Early Case Incidence

论文作者

Kevrekidis, G. A., Rapti, Z., Drossinos, Y., Kevrekidis, P. G., Barmann, M. A., Chen, Q. Y., Cuevas-Maraver, J.

论文摘要

人们普遍认为,在Covid-19-19大流行的第一阶段报告的病例数量严重低估了实际病例的数量。我们利用将惠特尼和塔克斯定理定理的延迟延迟,并利用高斯流程回归来估计2020年第一次浪潮中的案件数量,该案件基于在欧洲几个国家,韩国和巴西的第二波流行病。我们假设第二波更准确地监控,因此可以信任它。然后,我们仅使用死亡或住院治疗对隐含的原始动力学系统的歧管构建歧管。最后,我们将差异性限制为动态系统的报告病例坐标。我们的主要发现是,在所研究的欧洲国家中,实际案件的报道低达50 \%。另一方面,在韩国(具有示例性和主动的缓解方法)预测,实际情况和报告的案件之间的差异要小得多,预计估计低估了约17%。我们认为,我们的背景框架适用于其他流行病暴发(由于质量有限或质量差),实际情况存在不确定性。

It is widely accepted that the number of reported cases during the first stages of the COVID-19 pandemic severely underestimates the number of actual cases. We leverage delay embedding theorems of Whitney and Takens and use Gaussian Process regression to estimate the number of cases during the first 2020 wave based on the second wave of the epidemic in several European countries, South Korea, and Brazil. We assume that the second wave was more accurately monitored and hence that it can be trusted. We then construct a manifold diffeomorphic to that of the implied original dynamical system, using fatalities or hospitalizations only. Finally, we restrict the diffeomorphism to the reported cases coordinate of the dynamical system. Our main finding is that in the European countries studied, the actual cases are under-reported by as much as 50\%. On the other hand, in South Korea -- which had an exemplary and proactive mitigation approach -- a far smaller discrepancy between the actual and reported cases is predicted, with an approximately 17\% predicted under-estimation. We believe that our backcasting framework is applicable to other epidemic outbreaks where (due to limited or poor quality data) there is uncertainty around the actual cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源