论文标题

确定分数量子厅相的拓扑边缘量子数

Determination of topological edge quantum numbers of fractional quantum Hall phases

论文作者

Srivastav, Saurabh Kumar, Kumar, Ravi, Spånslätt, Christian, Watanabe, K., Taniguchi, T., Mirlin, Alexander D., Gefen, Yuval, Das, Anindya

论文摘要

为了确定托管下游托管(CP)下游($ n_d $)和上游($ n_u $)边缘模式的拓扑量子数(FQH)状态,在存在边缘模式平衡的情况下进行量化运输是量化运输的关键。在达到非平衡型制度对电荷运输方面的挑战时,我们在这里瞄准了热门电导$ g_ {q} $,该电源纯粹由边缘量子数字$ n_d $和$ n_u $控制。我们的实验设置是用HBN封装的石墨门单层石墨烯设备实现的。 For temperatures up to $35mK$, our measured $G_{Q}$ at $ν= $ 2/3 and 3/5 (with CP modes) match the quantized values of non-equilibrated regime $(N_d + N_u)κ_{0}T$, where $κ_{0}T$ is a quanta of $G_{Q}$.随着温度的升高,$ g_ {q} $减小,最终取得了平衡制度$ | n_d -n_u |κ_{0} t $的值。相比之下,$ν= $ 1/3和2/5(无CP模式),$ g_q $在$n_dκ__{0} t $中保持稳健量化,独立于温度。因此,在两个机制下测量$ g_ {q} $的量化值,我们确定了边缘量子数,这为查找异国非亚伯式FQH状态的拓扑顺序打开了新的途径。

To determine the topological quantum numbers of fractional quantum Hall (FQH) states hosting counter-propagating (CP) downstream ($N_d$) and upstream ($N_u$) edge modes, it is pivotal to study quantized transport both in the presence and absence of edge mode equilibration. While reaching the non-equilibrated regime is challenging for charge transport, we target here the thermal Hall conductance $G_{Q}$, which is purely governed by edge quantum numbers $N_d$ and $N_u$. Our experimental setup is realized with a hBN encapsulated graphite gated monolayer graphene device. For temperatures up to $35mK$, our measured $G_{Q}$ at $ν= $ 2/3 and 3/5 (with CP modes) match the quantized values of non-equilibrated regime $(N_d + N_u)κ_{0}T$, where $κ_{0}T$ is a quanta of $G_{Q}$. With increasing temperature, $G_{Q}$ decreases and eventually takes the value of equilibrated regime $|N_d - N_u|κ_{0}T$. By contrast, at $ν= $1/3 and 2/5 (without CP modes), $G_Q$ remains robustly quantized at $N_dκ_{0}T$ independent of the temperature. Thus, measuring the quantized values of $G_{Q}$ at two regimes, we determine the edge quantum numbers, which opens a new route for finding the topological order of exotic non-Abelian FQH states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源