论文标题

从示例到规则:信息提取的神经指导规则综合

From Examples to Rules: Neural Guided Rule Synthesis for Information Extraction

论文作者

Vacareanu, Robert, Valenzuela-Escarcega, Marco A., Barbosa, George C. G., Sharp, Rebecca, Surdeanu, Mihai

论文摘要

尽管深度学习的信息提取方法取得了许多成功,但由于需求转移,它们可能很难增加或维持。另一方面,基于规则的方法可以更容易修改。但是,制作规则需要语言学和感兴趣领域的专业知识,这对于大多数用户来说都是不可行的。在这里,我们试图结合这两个方向的优势,同时减轻它们的缺点。我们将相邻程序合成领域的最新进展转化为信息提取,从提供的示例中综合规则。我们使用基于变压器的体系结构来指导枚举搜索,并证明这减少了在找到规则之前需要探索的步骤数。此外,我们表明,如果没有在特定领域培训合成算法,我们的合成规则就在一项任务的1次场景上实现了最先进的性能,该方案的重点是与少量学习进行关系分类,并在5-SHOT场景中具有竞争性表现。

While deep learning approaches to information extraction have had many successes, they can be difficult to augment or maintain as needs shift. Rule-based methods, on the other hand, can be more easily modified. However, crafting rules requires expertise in linguistics and the domain of interest, making it infeasible for most users. Here we attempt to combine the advantages of these two directions while mitigating their drawbacks. We adapt recent advances from the adjacent field of program synthesis to information extraction, synthesizing rules from provided examples. We use a transformer-based architecture to guide an enumerative search, and show that this reduces the number of steps that need to be explored before a rule is found. Further, we show that without training the synthesis algorithm on the specific domain, our synthesized rules achieve state-of-the-art performance on the 1-shot scenario of a task that focuses on few-shot learning for relation classification, and competitive performance in the 5-shot scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源