论文标题

归因方法的一致,高效的评估策略

A Consistent and Efficient Evaluation Strategy for Attribution Methods

论文作者

Rong, Yao, Leemann, Tobias, Borisov, Vadim, Kasneci, Gjergji, Kasneci, Enkelejda

论文摘要

近年来提出了各种本地特征归因方法,后续工作提出了几种评估策略。为了评估不同归因技术的归因质量,在图像域中这些评估策略中最受欢迎的质量使用像素扰动。但是,最近的进步发现,不同的评估策略会产生归因方法的冲突排名,并且计算的昂贵。在这项工作中,我们提出了基于像素扰动的评估策略的信息理论分析。我们的发现表明,通过去除的像素的形状而不是其实际值,结果会受到信息泄漏的强烈影响。使用我们的理论见解,我们提出了一个新的评估框架,该框架称为“删除和Debias”(ROAD),该框架提供了两种贡献:首先,它减轻了混杂因素的影响,这需要在评估策略之间更高的一致性。其次,与最先进的情况相比,道路不需要计算昂贵的重新训练步骤,并节省了高达99%的计算成本。我们在https://github.com/tleemann/road_evaluation上发布我们的源代码。

With a variety of local feature attribution methods being proposed in recent years, follow-up work suggested several evaluation strategies. To assess the attribution quality across different attribution techniques, the most popular among these evaluation strategies in the image domain use pixel perturbations. However, recent advances discovered that different evaluation strategies produce conflicting rankings of attribution methods and can be prohibitively expensive to compute. In this work, we present an information-theoretic analysis of evaluation strategies based on pixel perturbations. Our findings reveal that the results are strongly affected by information leakage through the shape of the removed pixels as opposed to their actual values. Using our theoretical insights, we propose a novel evaluation framework termed Remove and Debias (ROAD) which offers two contributions: First, it mitigates the impact of the confounders, which entails higher consistency among evaluation strategies. Second, ROAD does not require the computationally expensive retraining step and saves up to 99% in computational costs compared to the state-of-the-art. We release our source code at https://github.com/tleemann/road_evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源