论文标题
用于操作单元检测的多阶网络
Multi-Order Networks for Action Unit Detection
论文作者
论文摘要
动作单元(AU)是用于描述面部表情的肌肉激活。因此,准确的AU识别可以解锁不合适的面部表示,可以改善基于面部的情感计算应用。从学习的角度来看,AU检测是一个多任务问题,具有强大的任务依赖性。为了解决此类问题,大多数方法要么依赖重量共享,要么通过使用贝叶斯链规则分解联合任务分布来添加明确的依赖建模。如果后一种策略产生了全面的任务之间的关系建模,则需要将任意命令施加到无序的任务集中。至关重要的是,这种排序选择已被确定为性能变化的来源。在本文中,我们提出了多阶网络(MONET),这是一种具有联合任务订单优化的多任务方法。莫奈(Monet)使用可区分的订单选择,通过其最佳链条共同学习任务模块。此外,我们引入热身和订单辍学,以鼓励订单探索来增强订单选择。在实验上,我们首先证明了在玩具环境中检索最佳顺序的莫奈能力。其次,我们通过表明Monet在多个属性检测问题上为其广泛的依赖性设置所选择的多个属性检测问题胜过现有的多任务基准来验证Monet架构。更重要的是,我们证明莫奈在AU检测中显着扩展了最先进的性能。
Action Units (AU) are muscular activations used to describe facial expressions. Therefore accurate AU recognition unlocks unbiaised face representation which can improve face-based affective computing applications. From a learning standpoint AU detection is a multi-task problem with strong inter-task dependencies. To solve such problem, most approaches either rely on weight sharing, or add explicit dependency modelling by decomposing the joint task distribution using Bayes chain rule. If the latter strategy yields comprehensive inter-task relationships modelling, it requires imposing an arbitrary order into an unordered task set. Crucially, this ordering choice has been identified as a source of performance variations. In this paper, we present Multi-Order Network (MONET), a multi-task method with joint task order optimization. MONET uses a differentiable order selection to jointly learn task-wise modules with their optimal chaining order. Furthermore, we introduce warmup and order dropout to enhance order selection by encouraging order exploration. Experimentally, we first demonstrate MONET capacity to retrieve the optimal order in a toy environment. Second, we validate MONET architecture by showing that MONET outperforms existing multi-task baselines on multiple attribute detection problems chosen for their wide range of dependency settings. More importantly, we demonstrate that MONET significantly extends state-of-the-art performance in AU detection.