论文标题
NTU病毒:一种视觉惯性数据集,从航空车辆的角度来看
NTU VIRAL: A Visual-Inertial-Ranging-Lidar Dataset, From an Aerial Vehicle Viewpoint
论文作者
论文摘要
近年来,自主机器人在研究和日常生活中变得无处不在。在许多因素中,公共数据集在该领域的进步中起着重要作用,因为它们放弃了对硬件和人力的初始投资的巨大投资。但是,对于对自动空中系统的研究,似乎相对缺乏公共数据集与用于自动驾驶和地面机器人的数据集有关。因此,为了填补这一空白,我们在配备有广泛而独特的传感器的空中平台上进行了数据收集练习:两个3D激光射击,两个硬件同步的全球散布摄像头,多个惯性测量单元(IMUS),尤其是多个Ultra Ultra Ultra-Wide(UWB)ranging单元。全面的传感器套件类似于自动驾驶汽车的套件,但具有空中操作的独特而具有挑战性的特征。我们在几个具有挑战性的室内和室外条件下记录多个数据集。每个包装中还包括高准确激光跟踪器的校准结果和地面真相。可以通过我们的网页https://ntu-aris.github.io/ntu_viral_dataset访问所有资源。
In recent years, autonomous robots have become ubiquitous in research and daily life. Among many factors, public datasets play an important role in the progress of this field, as they waive the tall order of initial investment in hardware and manpower. However, for research on autonomous aerial systems, there appears to be a relative lack of public datasets on par with those used for autonomous driving and ground robots. Thus, to fill in this gap, we conduct a data collection exercise on an aerial platform equipped with an extensive and unique set of sensors: two 3D lidars, two hardware-synchronized global-shutter cameras, multiple Inertial Measurement Units (IMUs), and especially, multiple Ultra-wideband (UWB) ranging units. The comprehensive sensor suite resembles that of an autonomous driving car, but features distinct and challenging characteristics of aerial operations. We record multiple datasets in several challenging indoor and outdoor conditions. Calibration results and ground truth from a high-accuracy laser tracker are also included in each package. All resources can be accessed via our webpage https://ntu-aris.github.io/ntu_viral_dataset.