论文标题

计算树木产品中的格子

Counting lattices in products of trees

论文作者

Lazarovich, Nir, Levcovitz, Ivan, Margolis, Alex

论文摘要

一组宝马学位$(m,n)$是一个集团,它只是在两块普通树的$ m $ $ m $和$ n $的产品的顶点进行过渡。我们表明,对于$(Mn)^{αmn} $和$(Mn)^{βMn} $,对于$ 0 <α<β$,$(mn)^{αmn} $之间的可相称类别的$(m,n)$的可相称类别的数量。实际上,我们证明了几乎简单的宝马组的范围相同。我们为BMW $ $(M,N)$引入了一个随机模型,并表明该模型中几乎可以肯定的是一个随机的BMW组,这是不可还原的,并且在遗传上是无限的。

A BMW group of degree $(m,n)$ is a group that acts simply transitively on vertices of the product of two regular trees of degrees $m$ and $n$. We show that the number of commensurability classes of BMW groups of degree $(m,n)$ is bounded between $(mn)^{αmn}$ and $(mn)^{βmn}$ for some $0<α<β$. In fact, we show that the same bounds hold for virtually simple BMW groups. We introduce a random model for BMW groups of degree $(m,n)$ and show that asymptotically almost surely a random BMW group in this model is irreducible and hereditarily just-infinite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源