论文标题
在边界,拆分和分布数字上
On the bounding, splitting, and distributivity numbers
论文作者
论文摘要
$ \ mathcal p(ω)$的主要不变性$ \ mathfrak h,\ mathfrak b,\ mathfrak s $ of Mathcal p(ω)$可以满足$ω_______1\ leq \ leq \ mathfrak h \ leq h \ leq h \ leq \ leq \ min \ {\ mathfrak b,\ mathfrak b,\ mathfrak b,\ mathfrak s \ \ \ \ \} $。我们证明所有不平等可能都是严格的。我们还为$ \ Mathfrak H $引入了一个新的上限,并表明它可能小于$ \ Mathfrak S $。关键方法是利用有限的支持矩阵迭代ccc posets \ cite {blassshelah}。
The cardinal invariants $ \mathfrak h, \mathfrak b, \mathfrak s$ of $\mathcal P (ω)$ are known to satisfy that $ω_1 \leq \mathfrak h \leq\min\{\mathfrak b, \mathfrak s\}$. We prove that all inequalities can be strict. We also introduce a new upper bound for $\mathfrak h$ and show that it can be less than $\mathfrak s$. The key method is to utilize finite support matrix iterations of ccc posets following \cite{BlassShelah}.