论文标题
哈勃小行星猎人:I。在哈勃太空望远镜图像中识别小行星小径
Hubble Asteroid Hunter: I. Identifying asteroid trails in Hubble Space Telescope images
论文作者
论文摘要
大型公开可用的天文档案为搜索和研究太阳系对象开辟了新的可能性。但是,需要先进的技术来处理大量数据。这些无偏的调查可用于限制次要物体的尺寸分布,这代表了太阳系编队模型的难题。我们旨在使用数据挖掘中的ESA Hubble空间望远镜(HST)科学数据存档中的档案图像中的小行星识别小行星。我们在Zooniverse平台上开发了一个公民科学项目,哈勃小行星猎人(www.asteroidhunter.org)要求公众成员在档案中识别档案中的小行星小径。我们使用志愿者提供的标签来培训使用Google Cloud Automl Vision构建的自动深度学习模型,以探索整个HST档案,以检测跨越视野的小行星。我们报告了通过我们的公民科学项目和随后对ESA HST Science Data Archive的机器学习探索在档案HST数据中确定的1701个新的小行星步道的检测。我们检测到小行星的幅度为24.5,在统计学上比从地面调查中鉴定出的小行星种群均无统计。如预期的那样,大多数小行星分布在黄道平面附近,我们发现每平方度的约80小行星密度。我们将670条步道(占39%的步道)与次要行星中心数据库中的454个已知太阳系对象匹配,但是,没有发现1031(61%)步道的匹配项。身份不明的小行星微弱,平均比我们成功识别的小行星比小行星平均降低了1.6个幅度。它们可能对应于以前未知的对象。这项工作表明,公民科学和机器学习是对现有天文学科学档案中SSO进行系统搜索的有用技术。
Large and publicly available astronomical archives open up new possibilities to search and study Solar System objects. However, advanced techniques are required to deal with the large amounts of data. These unbiased surveys can be used to constrain the size distribution of minor bodies, which represents a piece of the puzzle for the formation models of the Solar System. We aim to identify asteroids in archival images from the ESA Hubble Space Telescope (HST) Science data archive using data mining. We developed a citizen science project on the Zooniverse platform, Hubble Asteroid Hunter (www.asteroidhunter.org) asking members of the public to identify asteroid trails in archival HST images. We used the labels provided by the volunteers to train an automated deep learning model built with Google Cloud AutoML Vision to explore the entire HST archive to detect asteroids crossing the field-of-view. We report the detection of 1701 new asteroid trails identified in archival HST data via our citizen science project and the subsequent machine learning exploration of the ESA HST science data archive. We detect asteroids to a magnitude of 24.5, which are statistically fainter than the populations of asteroids identified from ground-based surveys. The majority of asteroids are distributed near the ecliptic plane, as expected, where we find an approximate density of 80 asteroids per square degree. We match 670 trails (39% of the trails found) with 454 known Solar System objects in the Minor Planet Center database, however, no matches are found for 1031 (61%) trails. The unidentified asteroids are faint, being on average 1.6 magnitudes fainter than the asteroids we succeeded to identify. They probably correspond to previously unknown objects. This work demonstrates that citizen science and machine learning are useful techniques for the systematic search of SSOs in existing astronomy science archives.