论文标题
总稳定空间的几何分类
Geometric classification of total stability spaces
论文作者
论文摘要
We construct a geometric model for the root category $\mathcal{D}^b(Q)/[2]$ of any Dynkin diagram $Q$, which is an $h_Q$-gon $\mathbf{V}_Q$ with cores, where $h_Q$ is the Coxeter number and $\mathcal{D}^b(Q)$ is the bounded derived category associated to $Q$.作为一个应用程序,我们将所有空格分类为$ \ MATHRM {tost} \ Mathcal {d} $在三角形类别上的总稳定性条件的$ \ m nathcal {d} $,其中$ \ mathcal {d} $必须是形式的$ \ mathcal {d} d}^b(q)$。更确切地说,我们证明$ \ mathrm {tost} \ Mathcal {d}^b(q)/[2] $是稳定的稳定$ h_q $ - 类型$ q $的合适模量的同构。 特别是,类型$ d_n $的$ h_q $ -gon $ \ mathbf {v} $是(中央)对称双重刺穿$ 2(n-1)$ - gon。 $ \ mathbf {v} $如果它是凸面,并且穿刺在级别内 - $(n-2)$对角线。另一个有趣的情况是$ e_6 $,其中(稳定)$ h_q $ -gon(dodecagon)可以实现为一对平面平铺图案。
We construct a geometric model for the root category $\mathcal{D}^b(Q)/[2]$ of any Dynkin diagram $Q$, which is an $h_Q$-gon $\mathbf{V}_Q$ with cores, where $h_Q$ is the Coxeter number and $\mathcal{D}^b(Q)$ is the bounded derived category associated to $Q$. As an application, we classify all spaces $\mathrm{ToSt}\mathcal{D}$ of total stability conditions on triangulated categories $\mathcal{D}$, where $\mathcal{D}$ must be of the form $\mathcal{D}^b(Q)$. More precisely, we prove that $\mathrm{ToSt}\mathcal{D}^b(Q)/[2]$ is isomorphic to a suitable moduli space of stable $h_Q$-gons of type $Q$. In particular, an $h_Q$-gon $\mathbf{V}$ of type $D_n$ is a (centrally) symmetric doubly punctured $2(n-1)$-gon. $\mathbf{V}$ is stable if it is convex and the punctures are inside the level-$(n-2)$ diagonal-gon. Another interesting case is $E_6$, where the (stable) $h_Q$-gon (dodecagon) can be realized as a pair of planar tiling pattern.