论文标题
布朗运动的归化爱因斯坦模型的迭代能量估计
An Iterative Energy Estimate for Degenerate Einstein model of Brownian motion
论文作者
论文摘要
当碰撞之前的时间间隔($τ$)跳跃(自由跳跃)与单位量$ u(x,t)> 0 $在时间$ t $ t $ t $ t $ x $ x $时,我们考虑了粒子在碰撞之前(免费跳高)在碰撞(免费跳跃)碰撞之前(免费跳高)粒子数量的时间间隔($τ$)跳跃(自由跳跃)粒子数量的时间间隔($τ$)在碰撞(免费跳跃)相互碰撞(免费跳跃)时,我们考虑了堕落的爱因斯坦的布朗运动模型。参数$ 0 <τ\ leq c <\ infty $,控制流体的特征“几乎降低”到$ u \ u \ rightarrow \ infty $时。这种退化导致粒子在介质中传播的扩散的定位。在我们的报告中,我们将介绍免费跳跃时间间隔的结构性条件-U $τ$和这些免费跳跃$ ϕ $的频率作为$ u $的函数,可以保证$ u $的有限传播速度。
We consider the degenerate Einstein's Brownian motion model for the case when the time interval ($τ$) of particle Jumps before collision (free jumps) reciprocal to the number of particles per unit volume $u(x,t) > 0$ at the point of observation $x$ at time $t$. The parameter $0 < τ\leq C < \infty$, controls characteristic of the fluid "almost decreases" to $ 0 $ when $u \rightarrow \infty$. This degeneration leads to the localisation of the spread of particle propagation in the media. In our report we will present a structural condition of the time interval of free jumps - $τ$ and the frequency of these free jumps $ϕ$ as functions of $u$ which guarantees the finite speed of propagation of $u$.