论文标题

使用功能回归混合物在双能CT扫描上进行光谱图像聚类

Spectral image clustering on dual-energy CT scans using functional regression mixtures

论文作者

Brivet, Segolene, Chamroukhi, Faicel, Coates, Mark, Forghani, Reza, Savadjiev, Peter

论文摘要

双能计算机断层扫描(DECT)是一种先进的CT扫描技术,可以通过常规的CT扫描实现材料表征。它允许在每个3D图像体素上重建能量衰减曲线,代表不同有效扫描能级的不同图像衰减。在本文中,我们开发了新颖的功能数据分析(FDA)技术,并将其适应DECT衰变曲线的分析。更具体地说,我们构建了在混合物重量中整合空间上下文的功能混合模型,混合成分密度在能量衰减曲线上构建为功能观测。我们通过开发专用期望最大化(EM)算法来设计无监督的聚类算法,以对模型参数的最大似然估计。据我们所知,这是第一篇适应统计FDA工具和基于模型的聚类的文章,以利用DECT提供的完整光谱信息。我们评估了91个头颈癌DECT扫描的方法。我们将无监督的聚类结果与放射科医生手动追踪的肿瘤轮廓以及几种基线算法进行了比较。鉴于评估者间的变异性甚至在描述头颈肿瘤的专家之间,并且鉴于围绕肿瘤本身的组织反应的潜在重要性,我们提出的方法可能会增加基于头部和颈部癌中DECT数据的下游机器学习应用程序的临床结果预测的价值。

Dual-energy computed tomography (DECT) is an advanced CT scanning technique enabling material characterization not possible with conventional CT scans. It allows the reconstruction of energy decay curves at each 3D image voxel, representing varying image attenuation at different effective scanning energy levels. In this paper, we develop novel functional data analysis (FDA) techniques and adapt them to the analysis of DECT decay curves. More specifically, we construct functional mixture models that integrate spatial context in mixture weights, with mixture component densities being constructed upon the energy decay curves as functional observations. We design unsupervised clustering algorithms by developing dedicated expectation maximization (EM) algorithms for the maximum likelihood estimation of the model parameters. To our knowledge, this is the first article to adapt statistical FDA tools and model-based clustering to take advantage of the full spectral information provided by DECT. We evaluate our methods on 91 head and neck cancer DECT scans. We compare our unsupervised clustering results to tumor contours traced manually by radiologists, as well as to several baseline algorithms. Given the inter-rater variability even among experts at delineating head and neck tumors, and given the potential importance of tissue reactions surrounding the tumor itself, our proposed methodology has the potential to add value in downstream machine learning applications for clinical outcome prediction based on DECT data in head and neck cancer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源