论文标题
与线性关系网络的组成多物体增强学习
Compositional Multi-Object Reinforcement Learning with Linear Relation Networks
论文作者
论文摘要
尽管在过去几年中,增强学习的进步取得了显着的进步,但在多对象设置中解决强大的灵活对象操纵任务仍然是一个挑战。在本文中,我们专注于可以在固定多对象设置中学习操纵任务的模型,并推断此技能零射击而不会在对象数量变化时性能下降。我们考虑将特定立方体从集合中提升到目标位置的通用任务。我们发现,以前的方法主要利用关注和图形基于神经网络的体系结构,当输入对象的数量变化时,在缩放为$ k^2 $时不会概括其技能。我们提出了一个基于关系电感偏见来克服这些局限性的替代插件模块。除了超过其训练环境中的性能外,我们还表明,在$ k $中线性缩放的方法使代理可以推断和推广到任何新对象编号的零射击。
Although reinforcement learning has seen remarkable progress over the last years, solving robust dexterous object-manipulation tasks in multi-object settings remains a challenge. In this paper, we focus on models that can learn manipulation tasks in fixed multi-object settings and extrapolate this skill zero-shot without any drop in performance when the number of objects changes. We consider the generic task of bringing a specific cube out of a set to a goal position. We find that previous approaches, which primarily leverage attention and graph neural network-based architectures, do not generalize their skills when the number of input objects changes while scaling as $K^2$. We propose an alternative plug-and-play module based on relational inductive biases to overcome these limitations. Besides exceeding performances in their training environment, we show that our approach, which scales linearly in $K$, allows agents to extrapolate and generalize zero-shot to any new object number.