论文标题

神经网络训练不对称的跨点元素

Neural Network Training with Asymmetric Crosspoint Elements

论文作者

Onen, Murat, Gokmen, Tayfun, Todorov, Teodor K., Nowicki, Tomasz, del Alamo, Jesus A., Rozen, John, Haensch, Wilfried, Kim, Seyoung

论文摘要

包含可编程非易失性电阻的模拟横梁阵列正在进行深入研究深度神经网络训练。但是,实用电阻器件的无处不在的不对称电导调节严重降低了用常规算法训练的网络的分类性能。在这里,我们描述并在实验上证明了一种替代性的全平行训练算法:随机的哈密顿下降。该方法没有传统地调整误差函数梯度方向的权重,而是对网络参数进行编程,以成功地最大程度地减少包含设备不对称效果的系统的总能量(汉密尔顿)。我们提供关键的直觉,说明为什么设备不对称与常规培训算法根本不相容,以及新方法如何将其作为有用的功能而利用。我们的技术可以基于可用的设备技术立即实现模拟深度学习加速器。

Analog crossbar arrays comprising programmable nonvolatile resistors are under intense investigation for acceleration of deep neural network training. However, the ubiquitous asymmetric conductance modulation of practical resistive devices critically degrades the classification performance of networks trained with conventional algorithms. Here, we describe and experimentally demonstrate an alternative fully-parallel training algorithm: Stochastic Hamiltonian Descent. Instead of conventionally tuning weights in the direction of the error function gradient, this method programs the network parameters to successfully minimize the total energy (Hamiltonian) of the system that incorporates the effects of device asymmetry. We provide critical intuition on why device asymmetry is fundamentally incompatible with conventional training algorithms and how the new approach exploits it as a useful feature instead. Our technique enables immediate realization of analog deep learning accelerators based on readily available device technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源