论文标题

LINSYN:合成任意神经网络激活功能的紧密线性边界

LinSyn: Synthesizing Tight Linear Bounds for Arbitrary Neural Network Activation Functions

论文作者

Paulsen, Brandon, Wang, Chao

论文摘要

证明神经网络鲁棒性的最可扩展的方法取决于计算网络激活功能的声音线性下限和上限。当前的方法是有限的,因为线性界限必须由专家手工制作,并且可以是最佳选择,尤其是当网络的体系结构使用例如乘法(例如LSTMS和最近流行的Swish激活)组成操作时。对专家的依赖性阻止了鲁棒性认证对激活功能最新的发展的应用,此外,缺乏紧密性保证可能会对特定模型产生错误的不安全感。据我们所知,我们是第一个考虑为任意n维激活函数自动计算紧密线性界限的问题。我们提出了Linsyn,这是第一种实现任何任意激活函数紧密界限的方法,而仅利用激活函数本身的数学定义。我们的方法利用了一种有效的启发式方法来合成紧密且通常是合理的边界,然后使用高度优化的分支机构SMT求解器DREAL来验证声音(并在必要时调整边界)。即使我们的方法取决于SMT求解器,我们也表明运行时在实践中是合理的,并且与最新情况相比,我们的方法通常会达到更高的最终输出范围,并且超过了四倍的认证鲁棒性。

The most scalable approaches to certifying neural network robustness depend on computing sound linear lower and upper bounds for the network's activation functions. Current approaches are limited in that the linear bounds must be handcrafted by an expert, and can be sub-optimal, especially when the network's architecture composes operations using, for example, multiplication such as in LSTMs and the recently popular Swish activation. The dependence on an expert prevents the application of robustness certification to developments in the state-of-the-art of activation functions, and furthermore the lack of tightness guarantees may give a false sense of insecurity about a particular model. To the best of our knowledge, we are the first to consider the problem of automatically computing tight linear bounds for arbitrary n-dimensional activation functions. We propose LinSyn, the first approach that achieves tight bounds for any arbitrary activation function, while only leveraging the mathematical definition of the activation function itself. Our approach leverages an efficient heuristic approach to synthesize bounds that are tight and usually sound, and then verifies the soundness (and adjusts the bounds if necessary) using the highly optimized branch-and-bound SMT solver, dReal. Even though our approach depends on an SMT solver, we show that the runtime is reasonable in practice, and, compared with state of the art, our approach often achieves 2-5X tighter final output bounds and more than quadruple certified robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源