论文标题

从微观模拟的时空观察中构建粗尺度分叉图:一种简约的机器学习方法

Constructing coarse-scale bifurcation diagrams from spatio-temporal observations of microscopic simulations: A parsimonious machine learning approach

论文作者

Galaris, Evangelos, Fabiani, Gianluca, Gallos, Ioannis, Kevrekidis, Ioannis, Siettos, Constantinos

论文摘要

我们讨论了一种三层数据驱动的方法,以解决复杂系统建模中的反问题,从使用机器学习由微观模拟器生成的时空数据。在第一步中,我们利用了使用遗留的交叉验证(LOOCV)来利用流形学习,尤其是对较小的扩散图,以确定歧管的固有维度,其中出现的动力学在参数空间上进化,并且在参数空间上进行特征选择。在第二步中,基于选定的功能,我们使用两个机器学习方案学习有效偏微分方程(PDE)的右侧,即使用适当的随机样品进行合适的随机样品构建,具有两个隐藏层和两个隐藏层和单层随机投影网络(RPNN)的隐藏层和单层随机投影网络(RPNN)。最后,基于学习的黑框PDE模型,我们构建了相应的分叉图,从而利用了数值分叉分析工具包。在我们的插图中,我们实施了提出的方法,以从$ d1q3 $ lattice boltzmann模拟生成的数据中构建1D Fitzhugh-Nagumo PDE的一参数分叉图。在构建粗尺度分叉图的数值准确性方面,该方法非常有效。此外,拟议的RPNN计划的$ \ sim $ \ sim $ 20至30倍于训练阶段的成本低于传统的浅频FNN,因此作为解决高维PDE的逆问题的有前途的替代方案。

We address a three-tier data-driven approach to solve the inverse problem in complex systems modelling from spatio-temporal data produced by microscopic simulators using machine learning. In the first step, we exploit manifold learning and in particular parsimonious Diffusion Maps using leave-one-out cross-validation (LOOCV) to both identify the intrinsic dimension of the manifold where the emergent dynamics evolve and for feature selection over the parametric space. In the second step, based on the selected features, we learn the right-hand-side of the effective partial differential equations (PDEs) using two machine learning schemes, namely shallow Feedforward Neural Networks (FNNs) with two hidden layers and single-layer Random Projection Networks(RPNNs) which basis functions are constructed using an appropriate random sampling approach. Finally, based on the learned black-box PDE model, we construct the corresponding bifurcation diagram, thus exploiting the numerical bifurcation analysis toolkit. For our illustrations, we implemented the proposed method to construct the one-parameter bifurcation diagram of the 1D FitzHugh-Nagumo PDEs from data generated by $D1Q3$ Lattice Boltzmann simulations. The proposed method was quite effective in terms of numerical accuracy regarding the construction of the coarse-scale bifurcation diagram. Furthermore, the proposed RPNN scheme was $\sim$ 20 to 30 times less costly regarding the training phase than the traditional shallow FNNs, thus arising as a promising alternative to deep learning for solving the inverse problem for high-dimensional PDEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源