论文标题

数据的高级表示

Hyper-Class Representation of Data

论文作者

Zhang, Shichao, Li, Jiaye, Zhang, Wenzhen, Qin, Yongsong

论文摘要

数据表示通常是具有其属性值的自然形式。在此基础上,数据处理是一个以属性为中心的计算。但是,以属性为中心的计算有三个限制,说,僵化的计算,偏好计算和不令人满意的输出。为了尝试这些问题,提出了一种新的数据表示形式,称为“超级级表示”,以改善建议。首先,定义了数据特征的横熵,KL差异和JS差异。然后,可以使用这三个参数发现数据中的超级类。最后,一种建议算法用于评估所提出的数据的超级级表示,并表明超级级表示能够为推荐系统提供真正有用的参考信息,并使建议比现有算法更好,即这种方法是有效且有希望的。

Data representation is usually a natural form with their attribute values. On this basis, data processing is an attribute-centered calculation. However, there are three limitations in the attribute-centered calculation, saying, inflexible calculation, preference computation, and unsatisfactory output. To attempt the issues, a new data representation, named as hyper-classes representation, is proposed for improving recommendation. First, the cross entropy, KL divergence and JS divergence of features in data are defined. And then, the hyper-classes in data can be discovered with these three parameters. Finally, a kind of recommendation algorithm is used to evaluate the proposed hyper-class representation of data, and shows that the hyper-class representation is able to provide truly useful reference information for recommendation systems and makes recommendations much better than existing algorithms, i.e., this approach is efficient and promising.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源