论文标题
一些涉及雅各比多项式的确定积分
Some definite integrals involving Jacobi polynomials
论文作者
论文摘要
Szmytkowski与Gegenbauer多项式有所不可分割。自然的概括是与雅各比多项式相似的积分。处理六种方法以得出第一个积分。第一种方法应该足以证明第一个积分不可分割的方法,但是通过其他方法,出现了显着的公式,例如par示例零平衡的F3 appell函数,可以将其转换为2F1超几何函数。另外三个积分完成了论文。
Szmytkowski derived a certain integral with Gegenbauer polynomials. A natural generalization is to derive lookalike integrals with Jacobi polynomials. Six methods are treated to derive the first integral. The first method should be enough to prove the first integral, but by the other methods there arises remarkable formula such as par example a zero-balanced F3 Appell function which can be converted into a 2F1 hypergeometric function. Another three integrals complete the paper.