论文标题

用沙克尔顿优化LLVM通过序列:线性遗传编程框架

Optimizing LLVM Pass Sequences with Shackleton: A Linear Genetic Programming Framework

论文作者

Peeler, Hannah, Li, Shuyue Stella, Sloss, Andrew N., Reid, Kenneth N., Yuan, Yuan, Banzhaf, Wolfgang

论文摘要

在本文中,我们将Shackleton作为一种广义框架介绍,从而使线性遗传编程的应用(一种在进化算法的保护下的技术)应用于各种用例。我们在这里还探索了此类方法的新应用:优化LLVM优化的序列通过。讨论了基础沙克尔顿的算法,重点是应用于LLVM Pass序列时框架所特有的不同特征的效果。结合对不同高参数设置的分析,我们报告了使用Shackleton自动优化Pass序列的结果,以在不同的复杂性水平下为两个软件应用程序。最后,我们反思当前实施的优势和局限性,并为进一步的改进铺平了道路。这些改进旨在使用自动发现方法超越手工制作的解决方案,以实现最佳传球序列。

In this paper we introduce Shackleton as a generalized framework enabling the application of linear genetic programming -- a technique under the umbrella of evolutionary algorithms -- to a variety of use cases. We also explore here a novel application for this class of methods: optimizing sequences of LLVM optimization passes. The algorithm underpinning Shackleton is discussed, with an emphasis on the effects of different features unique to the framework when applied to LLVM pass sequences. Combined with analysis of different hyperparameter settings, we report the results on automatically optimizing pass sequences using Shackleton for two software applications at differing complexity levels. Finally, we reflect on the advantages and limitations of our current implementation and lay out a path for further improvements. These improvements aim to surpass hand-crafted solutions with an automatic discovery method for an optimal pass sequence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源