论文标题

Strega:使用紧凑的上下文编码变异自动编码器在脑MRI中无监督的异常检测

StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact Context-encoding Variational Autoencoder

论文作者

Chatterjee, Soumick, Sciarra, Alessandro, Dünnwald, Max, Tummala, Pavan, Agrawal, Shubham Kumar, Jauhari, Aishwarya, Kalra, Aman, Oeltze-Jafra, Steffen, Speck, Oliver, Nürnberger, Andreas

论文摘要

人脑解剖图像的专家解释是神经放射学的核心部分。已经提出了几种基于机器学习的技术来协助分析过程。但是,通常需要对ML模型进行培训以执行特定的任务,例如脑肿瘤分割或分类。相应的培训数据不仅需要费力的手动注释,而且人的大脑MRI中可以存在多种异常 - 甚至同时发生,这使得所有可能的异常情况都非常具有挑战性。因此,可能的解决方案是一种无监督的异常检测(UAD)系统,可以从健康受试者的未标记数据集中学习数据分布,然后应用以检测​​到分布样本。然后,这种技术可用于检测异常 - 病变或异常,例如脑肿瘤,而无需明确训练该特定病理的模型。过去已经为此任务提出了几种基于变异的自动编码器(VAE)技术。即使它们在人为模拟的异常情况下表现良好,但其中许多在检测临床数据中的异常情况下表现较差。这项研究提出了一个紧凑的版本的“上下文编码” VAE(CEVAE)模型,并结合了预处理和后处理步骤,创建了UAD管道(Strega)(Strega),这对临床数据更有力,并显示了其在检测大脑MRIS中肿瘤等异常中的适用性。提议的管道的骰子得分为0.642 $ \ pm $ 0.101,同时检测到T2W的Brats数据集中的肿瘤和0.859 $ \ pm $ 0.112,同时人为地诱发了异常,而表现最佳的基线则达到了0.522 $ 0.522 $ \ pm $ 0.135和0.135 $ 0.783 $ 0.111111111111111111111111111111 1111111111111111111111111111111111111111111111111111111111111111111111111111E。

Expert interpretation of anatomical images of the human brain is the central part of neuro-radiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI - even more than one simultaneously, which renders representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples. Such a technique can then be used to detect anomalies - lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data, and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642$\pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$\pm$0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522$\pm$0.135 and 0.783$\pm$0.111, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源