论文标题

在叶状歧管上的限制性药物功能的宇宙化协同学

Cosimplicial cohomology of restricted meromorphic functions on foliated manifolds

论文作者

Zuevsky, A.

论文摘要

从具有规定的分析特性的Meromormorphic函数的公理描述开始,我们介绍了在光滑复杂歧管的叶子上定义的受限制的Meromoromormormormormormorphic函数的cosimplicialssology。构建了双链链蛋白配合物和串联操作员的空间。引入了具有非共同参数的几个受限制的meromormorthic函数的乘法,并讨论了它们的属性,并讨论了它们的属性。特别是,我们证明,限制的meromormormormormormormormormormormormormormormormormormormormormormormormormorphic函数的不变式的构建是非逐渐消失的,与叶面的横向基础的选择无关,而在平滑的歧管上的坐标变化方面不变。作为一种应用,我们提供了一个普遍的共同体学不变性的示例,特别是概括了Godbillon-浪费了一个编纂的叶子。

Starting from the axiomatic description of meromorphic functions with prescribed analytic properties, we introduce the cosimplicial cohomology of restricted meromorphic functions defined on foliations of smooth complex manifolds. Spaces for double chain-cochain complexes and coboundary operators are constructed. Multiplications of several restricted meromorphic functions with non-commutative parameters, as well as for elements of double complex spaces are introduced and their properties are discussed. In particular, we prove that the construction of invariants of cosimplicial cohomology of restricted meromorphic functions is non-vanishing, independent of the choice of the transversal basis for a foliation, and invariant with respect to changes of coordinates on a smooth manifold and on transversal sections. As an application, we provide an example of general cohomological invariants, in particular, generalizing the Godbillon--Vay invariant for codimension one foliations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源