论文标题
正常和高压下Aginte $ _2 $的NMR研究
NMR study of AgInTe$_2$ at normal and high pressure
论文作者
论文摘要
三元半导体aginte $ _2 $是一种具有沙尔卡皮岩型结构的热电材料,可在高压下可逆地变成岩石型结构。核磁共振(NMR)被认为可以对原子间长度尺度上的材料特性提供独特的见解,尤其是在结构相变的背景下。在这里,$^{115} $ in和$^{125} $ te nmr用于研究环境条件的Aginte $ _2 $,最大压力为5 GPA。 $^{125} $ te的磁场依赖性和魔法角度旋转(MAS)实验证明,具有强烈增强的核中核耦合,以及各向同性化学移位的分布表明有一定程度的阳离子疾病。对于$^{115} $,以及与晶体结构一致的化学位移分布,间接核耦合较小。 NMR中的$^{115} $由小型四极相互作用($ν_\ mathrm {q} \约$ 90 kHz),并且与$^{125} $ te相比,显示了更快的数量级核放松订单。在大约3 GPA的压力下,四极相互作用的$^{115} $急剧增加到约2400 kHz,这表明相位过渡到具有定义明确但非立方体的本地对称性的结构,而$^{115} $ in Shift in Shift in Shift in Shift in Shift in shift in shift中却没有重大变化的电子结构。 NMR信号丢失了大约5 GPA(至少达约10 GPA)。但是,恢复了释放压力后,回收了A信号,该信号指向具有高度无序的亚稳态环境压力阶段。
The ternary semiconductor AgInTe$_2$ is a thermoelectric material with chalcopyrite-type structure that transforms reversibly into a rocksalt-type structure under high pressure. Nuclear magnetic resonance (NMR) is considered to provide unique insight into material properties on interatomic length scales, especially in the context of structural phase transitions. Here, $^{115}$In and $^{125}$Te NMR is used to study AgInTe$_2$ for ambient conditions and pressures up to 5 GPa. Magnetic field dependent and magic angle spinning (MAS) experiments of $^{125}$Te prove strongly enhanced internuclear couplings, as well as a distribution of isotropic chemical shifts suggesting a certain degree of cation disorder. The indirect nuclear coupling is smaller for $^{115}$In, as well as the chemical shift distribution in agreement with the crystal structure. The $^{115}$In NMR is further governed by a small quadrupolar interaction ($ν_\mathrm{Q} \approx$ 90 kHz) and shows an orders of magnitude faster nuclear relaxation in comparison to that of $^{125}$Te. At a pressure of about 3 GPa, the $^{115}$In quadrupole interaction increases sharply to about 2400 kHz, indicating a phase transition to a structure with a well defined, though non-cubic local symmetry, while the $^{115}$In shift suggests no significant changes of the electronic structure. The NMR signal is lost above about 5 GPa (at least up to about 10 GPa). However, upon releasing the pressure a signal is recovered that points to the reported metastable ambient pressure phase with a high degree of disorder.