论文标题

Einstein歧管的曲率身份5和6

Curvature identities for Einstein manifolds of dimension 5 and 6

论文作者

Euh, Yunhee, Kim, Jihun, Park, JeongHyeong

论文摘要

帕特森(Patterson)讨论了[14]中riemannian流形的曲率身份,任何6维里曼尼亚歧管的曲率身份都独立于Chern-Gauss-Bonnet定理[8]。在本文中,我们提供了帕特森曲率身份的显式公式,该公式具有5维和6维的爱因斯坦歧管。我们证实,以前工作[8]中爱因斯坦流形的曲率身份与帕特森结果中得出的曲率身份相同。我们还提供支持定理的示例。

Patterson discussed the curvature identities on Riemannian manifolds in [14], and a curvature identity for any 6-dimensional Riemannian manifold was independently derived from the Chern-Gauss-Bonnet Theorem [8]. In this paper, we provide the explicit formulae of Patterson's curvature identity that holds on 5-dimensional and 6-dimensional Einstein manifolds. We confirm that the curvature identities on the Einstein manifold from the previous work [8] are the same as the curvature identities deduced from Patterson's result. We also provide examples that support the theorems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源