论文标题
在随机矩阵的复杂立方集合中研究两阶段区域
Investigation of the two-cut phase region in the complex cubic ensemble of random matrices
论文作者
论文摘要
我们研究了带有潜在的$ v(m)= - \ frac {1} {3} {3} m^3+tm $的随机矩阵的复杂立方统一集合的相图,其中$ t $是一个复杂的参数。正如我们先前的论文所证明的那样,模型的整个阶段空间,$ t \ in \ mathbb c $,被划分为两个阶段区域,$ o _ {\ mathsf {one cut}} $和$ o _ {\ mathsf {tw twib-cut}} $ im Mathsf { Jordan Arc(剪切)和$ o _ {\ Mathsf {twip-cut}} $通过两个切口。区域$ o _ {\ mathsf {one-cut}} $和$ o _ {\ mathsf {twi-cut}} $由临界曲线隔开,可以根据辅助四边形差异的关键轨迹来计算。在我们以前的工作中,对单切相区域进行了详细研究。在本文中,我们研究了两切区域。我们证明,在两个切割区域中,切割的终点是参数$ t $的真实和虚构部分的分析函数,但不是参数$ t $本身的分析函数。我们还获得了与随机矩阵及其复发系数相关的正交多项式的半经典渐近分数。这些证明是基于Riemann-Hilbert方法,用于正交多项式的半经典渐近学以及$ s $ curves和二次差异的理论。
We investigate the phase diagram of the complex cubic unitary ensemble of random matrices with the potential $V(M)=-\frac{1}{3}M^3+tM$ where $t$ is a complex parameter. As proven in our previous paper, the whole phase space of the model, $t\in\mathbb C$, is partitioned into two phase regions, $O_{\mathsf{one-cut}}$ and $O_{\mathsf{two-cut}}$, such that in $O_{\mathsf{one-cut}}$ the equilibrium measure is supported by one Jordan arc (cut) and in $O_{\mathsf{two-cut}}$ by two cuts. The regions $O_{\mathsf{one-cut}}$ and $O_{\mathsf{two-cut}}$ are separated by critical curves, which can be calculated in terms of critical trajectories of an auxiliary quadratic differential. In our previous work the one-cut phase region was investigated in detail. In the present paper we investigate the two-cut region. We prove that in the two-cut region the endpoints of the cuts are analytic functions of the real and imaginary parts of the parameter $t$, but not of the parameter $t$ itself. We also obtain the semiclassical asymptotics of the orthogonal polynomials associated with the ensemble of random matrices and their recurrence coefficients. The proofs are based on the Riemann--Hilbert approach to semiclassical asymptotics of the orthogonal polynomials and the theory of $S$-curves and quadratic differentials.