论文标题

自动编码双曲线表示对抗性

Autoencoding Hyperbolic Representation for Adversarial Generation

论文作者

Qu, Eric, Zou, Dongmian

论文摘要

随着几何深度学习的最新发展,神经网络已被广泛用于非欧几里得领域的数据。特别是,双曲线神经网络已被证明成功地处理数据的分层信息。但是,在训练过程中,许多双曲神经网络在数值上是不稳定的,而这种神经网络无法使用复杂的体系结构。这个关键问题使得为真实和复杂数据构建双曲线生成模型变得困难。在这项工作中,我们提出了一个双曲线生成网络,在该网络中,我们设计了新颖的体系结构和层次以提高训练的稳定性。我们提出的网络包含三个部分:首先是双曲线自动编码器(AE),该自动编码器(AE)产生用于输入数据的双曲线嵌入;其次,一种双曲线生成对抗网络(GAN),用于从简单噪声中生成AE的双曲线潜在嵌入;第三,一种从AE和GAN继承解码器的发电机。我们称该网络为双曲线AE-GAN或HAEGAN简称。 Haegan的体系结构在双曲线空间中促进了表达性表示,并且层的特定设计确保了数值稳定性。实验表明,Haegan能够以最新的结构相关性能生成复杂的数据。

With the recent advance of geometric deep learning, neural networks have been extensively used for data in non-Euclidean domains. In particular, hyperbolic neural networks have proved successful in processing hierarchical information of data. However, many hyperbolic neural networks are numerically unstable during training, which precludes using complex architectures. This crucial problem makes it difficult to build hyperbolic generative models for real and complex data. In this work, we propose a hyperbolic generative network in which we design novel architecture and layers to improve stability in training. Our proposed network contains three parts: first, a hyperbolic autoencoder (AE) that produces hyperbolic embedding for input data; second, a hyperbolic generative adversarial network (GAN) for generating the hyperbolic latent embedding of the AE from simple noise; third, a generator that inherits the decoder from the AE and the generator from the GAN. We call this network the hyperbolic AE-GAN, or HAEGAN for short. The architecture of HAEGAN fosters expressive representation in the hyperbolic space, and the specific design of layers ensures numerical stability. Experiments show that HAEGAN is able to generate complex data with state-of-the-art structure-related performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源