论文标题

部分可观测时空混沌系统的无模型预测

The Number of Rational Points of Two Parameter Calabi-Yau manifolds as Toric Hypersurfaces

论文作者

Jing, Yuan-Chun, Li, Xuan, Yang, Fu-Zhong

论文摘要

为两参数Calabi-yau $ n $ folds提供了复合数据中的理性点数量,作为有限字段$ \ mathbb f_p $的曲曲面超曲面。我们发现,基本时期等于Calabi-yau $ n $ n $ folds in Zeroth命令$ p $ -Adic扩展的理性点数。通过分析增强型多面体给出的GKZ系统的解决方案集,我们推断出在II型/F理论二元性下,3D和4D Calabi-yau歧管在零点方面具有相同数量的有理点。以五五元性及其二元性为例,通过数值计算给出了某些特定复合模量中的理性点的数量,以支持我们的结果。

The number of rational points in toric data are given for two-parameter Calabi-Yau $n$-folds as toric hypersurfaces over finite fields $\mathbb F_p$ . We find that the fundamental period is equal to the number of rational points of the Calabi-Yau $n$-folds in zeroth order $p$-adic expansion. By analyzing the solution set of the GKZ-system given by the enhanced polyhedron, we deduce that under type II/F-theory duality the 3D and 4D Calabi-Yau manifolds have the same number of rational points in zeroth order. Taking the quintic and its duality as an example, the number of rational points in some specific complex moduli are given by numerical calculation to support our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源