论文标题

部分可观测时空混沌系统的无模型预测

Generalized Global Ranking-Aware Neural Architecture Ranker for Efficient Image Classifier Search

论文作者

Guo, Bicheng, Chen, Tao, He, Shibo, Liu, Haoyu, Xu, Lilin, Ye, Peng, Chen, Jiming

论文摘要

神经体系结构搜索(NAS)是自动化有效图像处理DNN设计的强大工具。该排名被倡导为NAS设计有效的性能预测指标。先前的对比方法通过比较架构对并预测其相对性能来解决排名问题。但是,它仅关注两个相关建筑之间的排名,而忽略了搜索空间的整体质量分布,这可能会遇到概括性问题。有人提出了一个预测因子,即集中在特定体系结构的全球质量层的神经体系结构排名者(NAR),以解决由当地观点引起的此类问题。 NAR在全球范围内探索搜索空间的质量层,并根据其全球排名将每个人分类为他们所属的层。因此,预测变量获得了搜索空间的性能分布的知识,这有助于更轻松地将其排名能力推广到数据集。同时,全球质量分布通过根据质量层的统计数据直接对候选者进行采样,从而促进了搜索阶段,而质量层的统计数据不受培训搜索算法,例如增强算法(RL)或进化算法(EA),因此它简化了NAS管道并节省了计算机上的计算机上的高架。拟议的NAR比在两个广泛使用的NAS研究数据集上的最先进方法取得了更好的性能。在NAS-Bench-101的庞大搜索空间中,NAR可以轻松地找到具有最高0.01 $ \ unicode {x2030} $性能的架构。它还可以很好地概括为NAS Bench-201的不同图像数据集,即CIFAR-10,CIFAR-100和Imagenet-16-120,通过识别每个它们的最佳体系结构。

Neural Architecture Search (NAS) is a powerful tool for automating effective image processing DNN designing. The ranking has been advocated to design an efficient performance predictor for NAS. The previous contrastive method solves the ranking problem by comparing pairs of architectures and predicting their relative performance. However, it only focuses on the rankings between two involved architectures and neglects the overall quality distributions of the search space, which may suffer generalization issues. A predictor, namely Neural Architecture Ranker (NAR) which concentrates on the global quality tier of specific architecture, is proposed to tackle such problems caused by the local perspective. The NAR explores the quality tiers of the search space globally and classifies each individual to the tier they belong to according to its global ranking. Thus, the predictor gains the knowledge of the performance distributions of the search space which helps to generalize its ranking ability to the datasets more easily. Meanwhile, the global quality distribution facilitates the search phase by directly sampling candidates according to the statistics of quality tiers, which is free of training a search algorithm, e.g., Reinforcement Learning (RL) or Evolutionary Algorithm (EA), thus it simplifies the NAS pipeline and saves the computational overheads. The proposed NAR achieves better performance than the state-of-the-art methods on two widely used datasets for NAS research. On the vast search space of NAS-Bench-101, the NAR easily finds the architecture with top 0.01$\unicode{x2030}$ performance only by sampling. It also generalizes well to different image datasets of NAS-Bench-201, i.e., CIFAR-10, CIFAR-100, and ImageNet-16-120 by identifying the optimal architectures for each of them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源