论文标题

乘车旅行中的共享行为:机器学习推断方法

Sharing Behavior in Ride-hailing Trips: A Machine Learning Inference Approach

论文作者

Taiebat, Morteza, Amini, Elham, Xu, Ming

论文摘要

乘车车正在迅速改变城市和个人交通。乘车共享或集合对于减轻驾驶负面外部性很重要,例如增加拥塞和环境影响。但是,缺乏有关影响乘车行程中的旅行级共享行为的经验证据。我们在2019年使用芝加哥所有乘车旅行的新数据集,我们表明,骑手要求共享乘车的意愿在一年中从27.0%下降到了12.8%,而旅行量和里程在统计上保持不变。我们发现,共享偏好的下降是由于共享旅行的每英里成本增加以及单独的短途旅行转移。使用集合机器学习模型,我们发现旅行阻抗变量(旅行成本,距离和持续时间)共同贡献了95%和91%的预测能力,以确定是否要求共享旅行以及是否成功共享旅行。在存在这些旅行阻抗变量的情况下,空间和时间属性,社会人口统计学,建筑环境和过境供应变量在旅行水平上不具有预测能力。这意味着定价信号最有效地鼓励骑手分享他们的游乐设施。我们的发现阐明了乘车旅行中的共享行为,并可以帮助制定增加共享乘车的策略,尤其是随着需求从大流行中恢复。

Ride-hailing is rapidly changing urban and personal transportation. Ride sharing or pooling is important to mitigate negative externalities of ride-hailing such as increased congestion and environmental impacts. However, there lacks empirical evidence on what affect trip-level sharing behavior in ride-hailing. Using a novel dataset from all ride-hailing trips in Chicago in 2019, we show that the willingness of riders to request a shared ride has monotonically decreased from 27.0% to 12.8% throughout the year, while the trip volume and mileage have remained statistically unchanged. We find that the decline in sharing preference is due to an increased per-mile costs of shared trips and shifting shorter trips to solo. Using ensemble machine learning models, we find that the travel impedance variables (trip cost, distance, and duration) collectively contribute to 95% and 91% of the predictive power in determining whether a trip is requested to share and whether it is successfully shared, respectively. Spatial and temporal attributes, sociodemographic, built environment, and transit supply variables do not entail predictive power at the trip level in presence of these travel impedance variables. This implies that pricing signals are most effective to encourage riders to share their rides. Our findings shed light on sharing behavior in ride-hailing trips and can help devise strategies that increase shared ride-hailing, especially as the demand recovers from pandemic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源