论文标题
建议系统对互动扰动的敏感性
Rank List Sensitivity of Recommender Systems to Interaction Perturbations
论文作者
论文摘要
预测模型可以表现出对培训数据的敏感性:培训数据中的小变化可以产生在测试时间内为单个数据点分配相互矛盾的预测的模型。在这项工作中,我们研究了推荐系统中的这种敏感性,其中用户的建议在其他无关用户的交互中受到较小的扰动的巨大改变。我们引入了推荐系统的稳定性度量,称为等级列表灵敏度(RLS),该量度衡量了由于培训数据中的扰动而在测试时间变化时在测试时间变化时如何生成的等级列表。我们开发了一种方法,即Casper,该方法使用级联效应来识别最小和系统的扰动,以诱导推荐系统中更高的不稳定性。四个数据集的实验表明,推荐模型对引入或通过Casper引入的轻微扰动过于敏感 - 甚至扰动一个用户的一个随机交互,会大大更改所有用户的建议列表。重要的是,借助Casper扰动,这些模型比高准确性的使用者(即那些接受低质量建议的人)为低临界用户(即那些接受低质量建议的人)产生了更多不稳定的建议。
Prediction models can exhibit sensitivity with respect to training data: small changes in the training data can produce models that assign conflicting predictions to individual data points during test time. In this work, we study this sensitivity in recommender systems, where users' recommendations are drastically altered by minor perturbations in other unrelated users' interactions. We introduce a measure of stability for recommender systems, called Rank List Sensitivity (RLS), which measures how rank lists generated by a given recommender system at test time change as a result of a perturbation in the training data. We develop a method, CASPER, which uses cascading effect to identify the minimal and systematical perturbation to induce higher instability in a recommender system. Experiments on four datasets show that recommender models are overly sensitive to minor perturbations introduced randomly or via CASPER - even perturbing one random interaction of one user drastically changes the recommendation lists of all users. Importantly, with CASPER perturbation, the models generate more unstable recommendations for low-accuracy users (i.e., those who receive low-quality recommendations) than high-accuracy ones.