论文标题

先验降低非线性动力学系统稀疏识别的策略:比较研究

A Priori Denoising Strategies for Sparse Identification of Nonlinear Dynamical Systems: A Comparative Study

论文作者

Cortiella, Alexandre, Park, Kwang-Chun, Doostan, Alireza

论文摘要

近年来,从数据中对非线性动力学系统的识别变得越来越流行。稀疏的回归方法,例如非线性动力学的稀疏识别(sindy),促进了假设状态变量已知的先验性变量的新型管理方程式识别算法的发展,并且管理方程将其稀疏为稀疏的状态变量中的线性扩展。在识别非线性动力学系统的管理方程式的背景下,当状态测量被噪声破坏时,人们面临模型参数可识别性的问题。测量噪声会影响恢复过程的稳定性,从而产生不正确的稀疏性模式和管理方程系数的估计不准确。在这项工作中,我们调查并比较了几种本地和全球平滑技术的性能与先验的状态测量,并在数值上估算状态时间衍生品,以提高两种稀疏回归方法的准确性和鲁棒性,以恢复管理方程式:顺序阈值阈值最小二乘(STLS)(STLS)(STLS)(Stls)(Stls)和加权基础追求(WB)wbpors wbpors wbp ndn wbppn wbpdn。我们从经验上表明,通常使用整个测量数据集,超过本地方法,该方法在本地点围绕局部点采用了邻近的数据子集。我们还将广义交叉验证(GCV)和帕累托曲线标准作为模型选择技术进行比较,以自动估计接近最佳的调谐参数,并得出结论,帕累托曲线会产生更好的结果。通过非线性动力学系统的众所周知的基准问题,在经验上评估了脱氧策略和稀疏回归方法的性能。

In recent years, identification of nonlinear dynamical systems from data has become increasingly popular. Sparse regression approaches, such as Sparse Identification of Nonlinear Dynamics (SINDy), fostered the development of novel governing equation identification algorithms assuming the state variables are known a priori and the governing equations lend themselves to sparse, linear expansions in a (nonlinear) basis of the state variables. In the context of the identification of governing equations of nonlinear dynamical systems, one faces the problem of identifiability of model parameters when state measurements are corrupted by noise. Measurement noise affects the stability of the recovery process yielding incorrect sparsity patterns and inaccurate estimation of coefficients of the governing equations. In this work, we investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements and numerically estimate the state time-derivatives to improve the accuracy and robustness of two sparse regression methods to recover governing equations: Sequentially Thresholded Least Squares (STLS) and Weighted Basis Pursuit Denoising (WBPDN) algorithms. We empirically show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point. We additionally compare Generalized Cross Validation (GCV) and Pareto curve criteria as model selection techniques to automatically estimate near optimal tuning parameters, and conclude that Pareto curves yield better results. The performance of the denoising strategies and sparse regression methods is empirically evaluated through well-known benchmark problems of nonlinear dynamical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源