论文标题
在有限温度下驱动无序系统的力量相关器
Force-Force Correlator for Driven Disordered Systems at Finite Temperature
论文作者
论文摘要
当驱动无序的弹性歧管通过猝灭障碍时,施加在质量中心的固定力是波动的,平均$ f_c = - \ edline {f_w} $和方差$δ(w)= \ operline {f_w f_0}^c $,其中$ w $是外部控制的控制量的优点位置。 $δ(w)$是通过功能重新归一化组以消失的温度$ t \至0 $获得的,并消失了驱动速度$ v \至0 $。有两个固定点及其变形,它们众所周知:固定点($ v \ the $ v \ to $ v \ to $ v \ to $ v> 0 $)在$ v> 0 $上均方,以及零温度平衡固定点($ v \ the $ v \ the $ v \ to $ t \ t \ t \ t \ t \ t \ t \ 0 $ $ t> $ t> 0 $ t> 0 $ $ t> 0 $)。在这里,我们考虑驱动速度$ v> 0 $和温度$ t> 0 $的整个参数空间,并在数值上量化这两个固定点之间的交叉。
When driving a disordered elastic manifold through quenched disorder, the pinning forces exerted on the center of mass are fluctuating, with mean $f_c=-\overline{F_w} $ and variance $Δ(w)=\overline{F_w F_0}^c$, where $w$ is the externally imposed control parameter for the preferred position of the center of mass. $Δ(w)$ was obtained via the functional renormalization group in the limit of vanishing temperature $T\to 0$, and vanishing driving velocity $v\to 0$. There are two fixed points, and deformations thereof, which are well understood: The depinning fixed point ($T\to 0$ before $v\to 0$) rounded at $v>0$, and the zero-temperature equilibrium fixed point ($v\to 0$ before $T\to 0$) rounded at $T>0$. Here we consider the whole parameter space of driving velocity $v>0$ and temperature $T>0$, and quantify numerically the crossover between these two fixed points.